Physical Activity and the Metabolic Effects of S-equol in Mice Fed an Obesogenic Diet

Erin N. Bax1,2, Karlee E. Cochran1,2, Jiude Mao1,2, Cheryl S. Rosenfeld1,2,3

1Biomedical Sciences, University of Missouri Columbia, MO 65211, 2Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, and 3Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211

Introduction

In the U.S. and 35 other recorded countries, obesity rates continue to rise dramatically, with the U.S., Mexico, and England projected for 47%, 39%, and 35% obesity by 2030 (1). It has become imperative to find options to combat obesity, and the metabolite S-equol could be an adverse treatment. In 25% of Western individuals and 80% of Asian individuals, soy is naturally converted by gut bacteria to a metabolite called S-equol (2). S-equol has shown beneficial effects in those who produce it—like reduced prostate disease in men (3) and alleviation of menopausal symptoms in women (4). While select research has been conducted on S-equol, sex effects, exogenous dosing, and ability to negate obesogenic diet and promote activity have not been addressed. This research bridges these gaps by comparing the metabolic effects of S-equol treated mice to control mice.

Hypothesis

Mice treated with S-equol will demonstrate metabolic resistance to an obesogenic diet, as evidenced by increased voluntary physical activity, lower fat content, and faster glucose clearing times.

Methods

28 5-week-old C57 mice were placed on a high fat diet (HFD) and assigned four groups: 7 females on S-equol, 7 females on control, 7 males on S-equol, and 7 males on control. The control solution contained 2.5% DMSO/0.5% CMC while the treatment solution contained 10 mg/kg body weight S-equol in 2.5% DMSO/0.5% CMC. All 28 mice were dosed daily with respective solutions for two months. Over the course of one month, the following experiments were conducted and samples collected: Promethion Indirect Calorimetry Unit (Fig 1.), Echo MRI (Fig 2.), glucose tolerance tests (Fig 3.), tissue collection, and plasma samples (Fig 4.).

Results

S-equol may lead to negative metabolic outcomes.

CTRL Walking v. Still (%)

SEQ Walking v. Still (%)

Total Energy Expenditure

Total Meters Traveled

Average Respiratory Quotient

Fig 5. The control (CTRL) group spent 31.8% of time in the Indirect Calorimetry Unit walking and 66.7% of time still. The treatment group (S-equol, SEQ) spent 27.1% of time walking and 71.2% of time still. *p<.0001 for each comparison. Not pictured: The control group spent 66.6% of time sleeping while the treatment group spent 65.6% of time sleeping.

Fig 6. The average 24 hour energy expenditure of male control (M-CTRL) was 6.07 kcal while that of male S-equol (M-SEQ) was 5.48 kcal. SEM=0.755. *p=.001.

Fig 7. For the two days spent in the Indirect Calorimetry Unit, the control group walked 168 meters while the treatment group walked 147 meters. SEM=5.3289. *p=.0061.

Fig 8. The average RQ value is the ratio of the volume of CO2 exhaled to O2 inhaled, while an RQ value approaching 1.0 indicates the burning of carbohydrates. Female control v. treatment showed a significant difference, with SEM=.0100 and *p<.0001.

Fig 9. Glucose tolerance tests measure an individual’s ability to clear blood glucose after injection into the peritoneal cavity. None of the results were significant, with p>.05 for each data point.

Future Direction

- Serum chemistry and metabolic hormonal measurements are currently pending.
- As S-equol is naturally produced by some gut flora, it would be of interest to determine how this nutrient supplement affects the gut microflora (see Fig 10.).
- Gene expression studies will examine how S-equol treatment affects the nucleus accumbens, the brain region guiding voluntary physical activity (see Fig 11.), and white adipose tissue.

Acknowledgements

I’d like to thank The University of Missouri College of Veterinary Medicine Office of Research for the student support and NIEHS 1R01ES025547-A1 for the research grant to Dr. Cheryl S. Rosenfeld. A special thank you to Rebecca Welly for assisting with the Indirect Calorimetry Unit and tissue collection.

References