Background

- Osteosarcoma (OS) accounts for the majority of bone cancers in dogs as well as human children and young adults, making it a suitable comparative oncology model.
- A common treatment for canine OS is amputation with adjuvant chemotherapy, and in non-surgical candidates localized radiation therapy (RT) is utilized.
- Recently, bisphosphonates have been added to OS treatment protocols to increase the effectiveness of RT.
- Studies on the combined treatment of bisphosphonates and RT in human and murine cancer cells have exhibited synergy in primary and metastatic models.
- Synergy has yet to be studied in canine cancer cells.

Acknowledgements

- Student stipend support was provided by the Mizzou Advantage initiative in One Health / One Medicine. The authors would like to thank Dr. Angela McCleary-Wheeler at Cornell University for her generous donation of the D-17 and Abrams cells. They would also like to thank Bandit’s family for providing photos of their dog Bandit, who is currently undergoing ZA and RT OS treatment.

Hypothesis

- We expect that zoledronic acid (ZA), a third-generation bisphosphonate, in combination with RT will cause a significant increase in apoptosis of canine OS cells compared to either ZA or RT treatment alone.

Materials and Methods

- Abrams and D-17 canine OS cell lines were seeded in 96 well plates (2,000 cells/well) and incubated for 24 hours at 37°C.
- Cells were evaluated under four conditions: control with no treatment (Group 1), treatment with 10 µM of ZA (Group 2), treatment with 4 Gy of RT (Group 3), and treatment with both ZA and RT (Group 4).
- Group 2 cells were treated with 10 µM ZA for 24 hours, Group 3 cells were irradiated (4 Gy) using a linear accelerator (Siemen's Oncor, CA) at 48 hours, and Group 4 cells were treated with 10 µM ZA at 24 hours then irradiated at 48 hours.
- Cell viability, cytotoxicity, and apoptosis were measured for each group via Triplex ApoTox assay (Promega, WI) at 24 and 48 hours after treatment.
- Statistical significance of detected differences were calculated for each treatment group using a two-tailed Student T-test.

Results

- At 24 hours, the Abrams cell line showed no significant changes in viability (p > .05) or cytotoxicity (p > .05) with the combined treatment of ZA and RT, but significant increases in apoptosis (p < .0001) were seen compared to controls.
- At 48 hours, the same held true for the Abrams cells with no significant difference in viability (p > .05) or cytotoxicity (p > .05), but a significant increase in apoptosis (p<.0001) compared to the control.
- At 24 hours, the D-17 cell line showed no significant difference in viability (p > .05) or cytotoxicity (p > .05), but showed a significant increase in apoptosis (p<.0001)) when compared to the control.
- At 48 hours, D-17 cells showed no significant changes in viability or cytotoxicity with the combined treatment, but significant increases in apoptosis (p=.001) were seen compared to controls.
- These results demonstrate that the combination therapy of ZA and RT causes significant effects on canine OS cells by causing increased apoptosis at both 24 and 48 hours, especially in the highly metastatic Abrams line.
- We plan to continue investigating varying concentrations and doses of ZA and RT to find optimal synergy with the two therapies in canine OS cells.

Conclusion

- At 24 hours, the Abrams cell line showed no significant changes in viability (p > .05) or cytotoxicity (p > .05) with the combined treatment of ZA and RT, but significant increases in apoptosis (p < .0001) were seen compared to controls.

References