EFFECTS OF DEVELOPMENTAL EXPOSURE TO BISPHENOL A ON BEHAVIOR AND GUT MICROBIOME OF CALIFORNIA MICE (PEROMYSCUS CALIFORNICUS) IN THE F1 GENERATION

Lissette López Santiago1, Cheryl S. Rosenfeld2,3,4
1University of Missouri Veterinary Research Scholars Program; 2Department of Biomedical Sciences, University of Missouri; 3Bond Life Sciences Center, University of Missouri, Columbia, MO; 4Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO

BACKGROUND
• Bisphenol A (BPA) is an industrial chemical used to produce many commonly used household items.
• Developmental exposure to BPA may affect the gut microbiome and this may contribute to neurobehavioral disorders affecting behavioral domains disrupted in ASD children.
• In utero exposure to environmental chemicals may increase the risk of neurobehavioral disorders.

AIM AND HYPOTHESIS
• California mice developmentally exposed to BPA will demonstrate impairments in social, communication, learning, and memory behaviors. This group of animals are also predicted to demonstrate increased anxiety-like behaviors. Both males and females will be tested to examine for potential sex differences.
• We hypothesize that BPA causes gut microbiome dysbiosis leading to increased risk of neurobehavioral disorders.

EXPERIMENTAL DESIGN
• To examine the effects of BPA, P0 female California mice were exposed to BPA (50mg/kg per feed weight) two weeks prior to breeding (periconception period) throughout gestation and lactation as postnatal brain development is comparable to the third trimester in the human.

Behavioral analysis
• Behavioral tests that are currently being performed include, Barnes maze (Fig. 1) to test spatial learning and memory, and reverse Barnes in which the inverse hole was used to examine for deficits in cognitive plasticity. Animals are being tested in the Elevated Plus Maze (EPM) to measure anxiety-like and exploratory behaviors. (Fig. 4)

Social interactions
• Social interactions are being evaluated by recordings of mice exposed to one or two stranger mice (Fig. 3), and communication assessed by analyzing their audible and ultrasonic vocalizations. (Figure 2A, 2B)

Fecal microbiome
• Fecal microbiome will be examined by using PowerFecal® DNA isolation kit at various ages in the same F1 individuals that will undergo behavioral testing to determine whether gut microbiome changes are associated with behavioral deficits.
• The 16S rRNA sequencing approach will be used to assess this microbiome.

CONCLUSION AND FUTURE AIM
• The studies are currently ongoing but the animals appear to be handling the behavioral tests well.
• We have been able to obtain meaningful data.
• Continue behavioral tests
• Perform gut microbiome assessments.

ACKNOWLEDGMENTS
We would like to thank the University of Missouri Veterinary Research Scholars Program for their financial support, as well as Michelle Farrington, Juliette Baker, Paul Caldo, Sarabjit Kaur, and Leif McAllister for their dedication to this project; University of Missouri College of Veterinary Medicine

REFERENCES