Development of Differing Complex Microbiota in CD1 Mice

Melissa Siegrist 1, Marcia Hart 2, Craig Franklin 3,4, Aaron Ericsson 3,4

1Veterinary Research Scholars Program \(^{2} \)Comparative Medicine Program \(^{3} \)MU Metagenomics Center, \(^{4} \)Dept of Veterinary Pathobiology, University of Missouri, Columbia, MO

Background
- Differences in gut microbiota (GM) have been shown to modulate many mouse models of disease including colorectal cancer, inflammatory bowel disease, and neurological disorders
- Little is known about early life mouse GM and how early differences in composition and diversity impact disease models

Hypothesis
- Pups will first be colonized with maternal Firmicutes and Bacteroidetes
- Diversity will increase with age until stabilizing at adulthood
- Pups with Harlan (HSD) GM will have higher diversity and richness than Jackson (JAX) and Taconic (TAC) GM profiles

Methods
- Obtained rederived CD1 mice with designated GM profiles
- Extracted and sequenced DNA from cecal, colonic, and fecal samples in pups 1, 2, and 3 weeks of age (n=12/GM/week)
- Performed statistical analysis using PERMANOVA, Principal Component Analysis (PCA) and 3-way ANOVA

Development in CD1 Mice with Harlan (HSD) GM Profile
- Bars represent mean ± standard error of the mean (SEM)

Development in CD1 Mice with Jackson (JAX) GM Profile
- Bars represent mean ± standard error of the mean (SEM)

Development in CD1 Mice with Taconic (TAC) GM Profile
- Bars represent mean ± standard error of the mean (SEM)

Future Directions
- Determine how complex vs. simple GM profiles impact neurological development in mice
- Determine whether neonatal GM modulates tolerance in adulthood
- Determine how cecal GM seeds the colon
- Assess small intestinal GM
- Determine impacts of GM ontogeny on mucosal immune system development

Conclusions
- While Firmicutes and Bacteroidetes dominated most samples, Proteobacteria outweighed both phyla in GMHSD week 1 neonates.
- The cecal, colonic, and fecal GM increased in richness and diversity with age
- Mice previously found to harbor a more complex microbiota in adulthood (GMHSD) had more diversity and richness than mice with simpler profiles (GMJAX, GMTAC).
- Compositionally, GM profiles are the markedly dissimilar at week 1 of age but converge towards adulthood.

Acknowledgments
The author would like to thank the Franklin and Ericsson labs and the wonderful people at MMRR for their help and encouragement. Student support came from an endowment established by IDEXX-BioResearch. Funding provided through NIH U42OD010918-18

Figures
- **Fig 3** Stacked bar chart of microbiota composition of cecal, colonic, and fecal contents in GMHSD mice at weeks 1, 2, and 3.
- **Fig 4** Stacked bar chart of microbiota composition of cecal, colonic, and fecal contents in GMJAX and GMHSD mice at weeks 1, 2, and 3.
- **Fig 5** Stacked bar chart of microbiota composition of cecal, colonic, and fecal contents in GMJAX and GMHSD mice at weeks 1, 2, and 3.
- **Fig 6** PCA comparing cecal contents of GM profiles at 1, 2, and 3 weeks of age. Circles represent 95% confidence intervals.