BACKGROUND

- Colon cancer affects men at an earlier age and higher rate compared to women
- The Pirc (polyposis in the rat colon) rat model recapitulates this sex disparity
- Orchidectomy significantly protects male Pirc rats from tumor development while replacement of testosterone through supplementation reverses the effect
- Complex gut microbiota modules disease susceptibility of familial colon cancer
- When male Pirc rats were co-housed, some had higher tumor burdens while others had lower tumor burdens

HYPOTHESIS / OBJECTIVES

The increased tumor burden in co-housed male rats is due to changes in the microbiome that is affected by differential levels of the stress hormone corticosterone

Female rats supplemented with DHT (dihydrotestosterone) would have a higher tumor burden mediated through changes in the microbiome

METHODS

Co-housing Study: 2 weeks 6 months

- Pre-housing
- Males
- Female and male pairs housed
- Fecal and serum samples collected

Ovariectomy Study: 1 month 6 months

- Pre-ovariectomy
- Females
- Ovariectomy
- Fecal and serum samples collected

Longitudinal characterization of the gut microbiota

- Extract and purify fecal DNA
- Amplify V3 region of microbial 16S rRNA gene via polymerase chain reaction
- Sequence 90-120,000 reads per sample using Illumina MiSeq platform
- Amine sequence data using database of 16S rRNA gene sequences

CO-HOUSING RESULTS

Microbiomes were not significantly different before co-housing

LONGITUDINAL MICRBIOME COMPOSITION

Co-housing results:

- Microbiomes were not significantly different before co-housing

LONGITUDINAL MICRBIOME COMPOSITION

Co-housing results:

- Microbiomes were not significantly different before co-housing

Fecal vs Serum Corticosterone

- Low tumor (10-15)
- High tumor (150-150)

OVARIECTOMY RESULTS

There are no significant microbiome changes at one month post ovariectomy

CONCLUSIONS

- Fecal corticosterone shows similar trends to serum samples
- Corticosterone levels did not correlate with tumor burdens in co-housed male Pirc rats
- The microbiome did significantly change over the 6 month investigation
- Certain bacteria positively or negatively correlate at early time points indicating their potential role in tumor development

Ovariectomy Study

- There are no significant microbiome changes at one month post ovariectomy
- The ovariectomy investigation is ongoing

ACKNOWLEDGEMENTS

This work is funded by the University of Missouri faculty development grant, a grant from the American Society of Laboratory Animal Practitioners Foundation (ASLAP) with funding from GlaxoSmithKline and an endowment established by IESXX BioResearch. We would also like to thank Sarah Hansen, the staff of the RRRC Reproductive Services Laboratory, and the Office of Animal Resource’s Staff at University of Missouri.

REFERENCES
